Exploring endothelial protein c receptor as a therapeutic target: mapping distribution and correlation with nanoparticle targeting Grace D.M. Eriksen, Martin Bak, David Schultz, Heidi Arps, Doha Ghannam, Anja Brus, Tsinat Berhane, Andrew J.Urquhart

Background

Finding effective therapeutic targets for addressing endothelial dysfunction related to atherosclerosis, diabetes, chronic liver and kidney disease remains challenging.

The endothelial protein C receptor (EPCR) is widely expressed and a keyplayer in endothelial dysfunction. For optimized drug design and to avoid competetive inhibition when targeting EPCR, knowing the distribution is useful.

This study investigates EPCR as a potential target by mapping its distribution in a murine model.

Inductively coupled plasma mass spectrometry (ICP-MS): quantify sodium hexachloroplatinate (Pt) accumulation in organs upon IVinjected Pt-loaded liposomes with anti-EPCR monoclonal antibodies (mAb).

Bioluminescence: image IV-injected mRNA encoding luciferase (Luc) encapsulated in lipid nanoparticles (LNPs) surface coated with anti EPCR mAb.

Flow-induced dispersion analysis (FIDA): study antibody binding

Liposome with Pt load as tracer was functionalized with anti-EPCR antibody to target EPCR, a transmembrane bound protein in blood vessel endothelium. Accumulation of Pt was measured in various organs to map the distribution of EPCR.

Biodistribution - Targeting

Anti-EPCR Abs and IgG Ab compared for binding specificity. Data suggests EPCR1 (TF) has superior binding than EPCR2 (CS) in liver and spleen.

(ICP-MS)

Pt concentration in mouse organs Eye mean ± SEM EPCR1 (TF): # 16-2012-83. EPCR2 (CS): # PAA022Mu01. IgG: # 16-4031-85. *n* = 24

Biodistribution - Targeting (Bioluminescence)

Optimizing nanoparticle design with increased antibody densities in LNP surface might affect targeting of EPCR.

Mapping EPCR: Unlocking New **Avenues in Vascular Therapy**

Results

ELISA showed > 10-fold (~ 20.000 pg/mL) and > 24-fold (~ 50.000 pg/mL) higher EPCR expression in kidney and liver, respectively, compared to other organs.

ICP-MS depicted varying Pt accumulation. Pt-concentration in liver and spleen ranged from \sim 10-12 ng/mg tissue being 5-20 fold higher, compared to other organs.

Bioluminescence primarily displayed luciferase expression in the liver. Increasing Ab density on LNP surface indicated higher luciferase expression

Flow-induced dispersion analysis (FIDA) validated antibody-antigen binding with $\mathbf{K}_{\mathbf{D}}$ values of ~ 750 nM.

Binding affinity

(FIDA)

750 nM

Characterization of binding affinity validates that antibody used for in vivo studies binds to recombinant EPCR.

Conclusion

This study suggests higher EPCR expression in the mouse liver and **kidney** than **previously reported**, and potential for targeted therapies.

Pt accumulation in liver and spleen is likely ascribed metabolic clearance. However, given the observed concentration of EPCR in these organs it could support **nanoparticle-based EPCR targeting**.

These findings propose that due to widespread EPCR expression in mice, the design of effective drug delivery requires new strategies for optimal nanoparticle surface arcitechture.

EPCR-ALC480 concentration	400 nM
EPCR-ALC480 size	3,66 nm
EPCR-ALC480:EPCR mAb size	5,14 nm
2	0,96

rEPCR: #9068-ER-050. EPCR mAB: #16-2012-83.

Notes

All *in vivo* studies were performed in healthy animals.

Figures were created in Biorender.com or contain artwork components of Servier Medical Art. The endothelial protein C receptor protein structure was generated with PyMOL.

Colloids and Biological Interfaces, DTU Health Tech, Department of Health Technology, Technical University of Denmark

